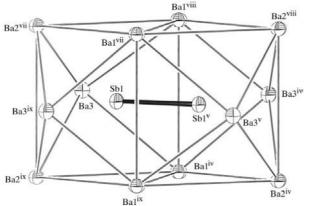
Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

Barium antimonide oxide, Ba₃Sb₂O

Michael Boss, Frank Pickhard, Markus Zumdick and Caroline Röhr*


Institut für Anorganische und Analytische Chemie, Universität Freiburg, Albertstraße 21, D-79104 Freiburg, Germany Correspondence e-mail: caroline@ruby.chemie.uni-freiburg.de

Received 17 August 2000 Accepted 9 February 2001

The antimonide oxide Ba_3Sb_2O consists of discrete $[Sb_2]^{4-}$ and O^{2-} anions, and crystallizes with a new structure type. The Sb-Sb distances are comparable to those known from electron-precise zintl phases and the tetrahedral coordination of the O^{2-} anion is also observed in some other Ba-rich metallide oxides.

Comment

Besides Ba₄Sb₂O, with isolated Sb³⁻ and O²⁻ anions (George & Röhr, 1996), Ba₃Sb₂O is the second ternary antimonide oxide to be reported. It crystallizes in the orthorhombic space group *Pbam* with a new structure type. The crystal structure contains $[Sb_2]^{4-}$ and O²⁻ anions separated by charge-compensating Ba²⁺ cations. The Sb–Sb distances in the two crystallographically independent dumb-bells are 2.837 (2) (Sb1–Sb1) and 2.857 (2) Å (Sb2–Sb2), and are comparable to those observed in Ba₅Sb₄ [*d*(Sb–Sb) = 2.886 Å; Brechtel *et al.*, 1981; Derrien *et al.*, 1999], in the mixed antimonide K₂Ba₃Sb₄ [*d*(Sb–Sb) = 2.856 and 2.899 Å; Eisenmann *et al.*, 1999] or in KBa₄Sb₃O [*d*(Sb–Sb) = 2.898 Å; Eisenmann *et al.*, 1999]. In the only known binary alkaline phase with Sb dumb-bells, Cs₄Sb₂ (Hirschle & Röhr, 2000), the Sb–Sb bond is

Figure 1

ORTEP view (Johnson, 1968) of the [Sb1–Sb1]^{4–} dumb-bell together with the coordinating Ba atoms (75% probability ellipsoids). [Symmetry codes: as in Table 1 plus (viii) $\frac{1}{2} + x$, $\frac{1}{2} - y$, 1 + z; (ix) $\frac{1}{2} - x$, $y - \frac{1}{2}$, 1 - z.]

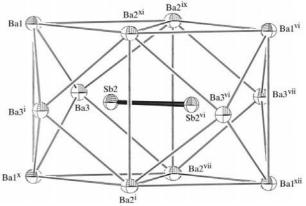
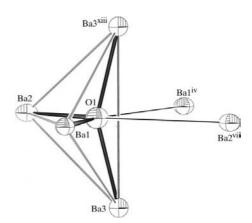



Figure 2

ORTEP view (Johnson, 1968) of the [Sb2–Sb2]⁴⁻ dumb-bell together with the coordinating Ba atoms (75% probability ellipsoids). [Symmetry codes: as in Table 1 and Fig. 1 plus (x) x, y, 1 + z; (xi) $x - \frac{1}{2}, \frac{1}{2} - y$, 1 + z; (xii) -x, -y, -z.]

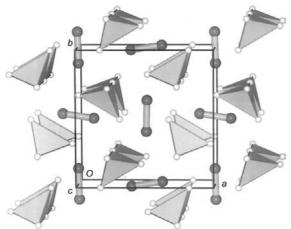


Figure 3

ORTEP view (Johnson, 1968) of the bicapped $[OBa_4]$ tetrahedron (75% probability ellipsoids). [Symmetry codes: as in Table 1 plus (xiii) x, y, z - 1.]

slightly longer (2.923 Å), showing that the distance is somewhat influenced by the crystal packing. The Sb atoms of the $[Sb_2]^{4-}$ dumb-bells in all these compounds have a tricapped trigonal prismatic environment composed of six Ba atoms (Ba1 and Ba2, trigonal prism), two Ba atoms (Ba3) and their Sb partner, shown in Figs. 1 and 2 for the title compound.

The oxide ions are coordinated by four barium cations (Fig. 3) in a distorted tetrahedral geometry, with O-Ba distances ranging from 2.528 (9) to 2.630 (3) Å. Two additional Ba cations, with much longer O-Ba distances of 4.04 (1) (Ba1) and 4.06 (1) Å (Ba2), extend the coordination to an octahedron. A similar coordination and comparable O-Ba distances are known from other oxygen-poor Ba metallide oxides and are observed, for example, in KBa₄Sb₃O [d(O -Ba) = 2.5436 Å; Eisenmann *et al.*, 1999] and $Ba_{10}Ge_7O_3$ [d(O-Ba) = 2.57-2.79 Å; von Schnering et al., 1997]. The Ocentered Ba tetrahedra (center at z = 0) are connected via corners to form chains running along [001]. In the unit cell (Fig. 4), the Sb–Sb anions (all Sb at $z = \frac{1}{2}$) are located between these chains. The Sb2-Sb2 dumb-bells at the unit-cell origin and the center of the cell are oriented along [010], whereas the Sb1-Sb1 dumb-bells at the faces of the unit cell are oriented

Figure 4

View of the unit cell (projection down [001]) of the crystal structure of Ba_3Sb_2O (light-gray balls represent Ba, light-gray tetrahedra represent $[OBa_4]$ and dark-gray balls represent Sb).

along [100]. The coordination spheres of the Ba cations are composed of one O and six Sb (Ba1 and Ba2) or two O and four Sb (Ba3) anions.

Experimental

Single crystals of Ba₃Sb₂O were first obtained from melts of stoichiometric mixtures of Ba (99%, Alkali-Metallhandelsgesellschaft mbH, Bonn), Sb (99%, ABCR, Karlsruhe) and Sb₂O₃ (99.999%, ABCR, Karlsruhe). Ba (2.455 g, 17.88 mmol), Sb (0.967 g, 7.943 mmol) and Sb₂O₃ (0.578 g, 1.98 mmol) were heated in corundum crucibles under an argon atmosphere to 1170 K over a period of 3 h and then cooled to room temperature at a rate of 20 K h^{-1} . The X-ray powder patterns of these samples can be indexed on the basis of the reported single-crystal data but show additional reflections for BaSb₂ (Pickhard & Röhr, 2000) and BaO. Single-phase products were obtained by simultaneous decomposition of BaH₂ and the use of steel autoclaves as containers for the corundum crucibles. Ba (2.0531 g, 14.95 mmol) and BaH₂ (0.6943 g, 4.98 mmol) were reacted with Sb (1.0112 g, 8.31 mmol) and Sb₂O₃ (0.2414 g, 0.83 mmol) using the same temperature program mentioned above. The title compound forms dark hydroscopic crystals with a metallic lustre, which were handled in a dry-box and prepared in capillaries filled with dried oil.

Crystal data

Ba ₃ Sb ₂ O $M_r = 671.52$ Orthorhombic, <i>Pbam</i> a = 12.4228 (11) Å b = 12.630 (3) Å c = 5.101 (3) Å V = 800.4 (4) Å ³ Z = 4 $D_x = 5.573$ Mg m ⁻³	Mo $K\alpha$ radiation Cell parameters from 848 reflections $\theta = 6.45-56.55^{\circ}$ $\mu = 21.10 \text{ mm}^{-1}$ T = 293 (2) K Irregular, metallic dark black 0.14 × 0.12 × 0.10 mm
Data collection Bruker AXS CCD diffractometer ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996) $T_{min} = 0.068, T_{max} = 0.121$ 4726 measured reflections 1026 independent reflections	925 reflections with $I > 2\sigma(I)$ $R_{int} = 0.035$ $\theta_{max} = 27.48^{\circ}$ $h = -15 \rightarrow 16$ $k = -7 \rightarrow 16$ $l = -6 \rightarrow 6$ Intensity decay: none

Table 1

Selected geometric parameters (Å).

Ba1-O1	2.528 (9)	Ba3-Sb1	3.4487 (12)
Ba1-Sb1 ⁱ	3.6592 (12)	Ba3-Sb2	3.5584 (11)
Ba1-Sb1 ⁱⁱ	3.6770 (13)	Ba3-Sb2 ^{iv}	3.5618 (11)
Ba1-Sb2	3.7174 (13)	Ba3-Sb1 ⁱⁱ	3.7294 (13)
Ba2-O1	2.563 (9)	Sb1-Sb1 ^v	2.8369 (16)
Ba2-Sb1 ⁱⁱ	3.6446 (12)	Sb2-Sb2 ^{vi}	2.8571 (17)
Ba2-Sb2 ⁱⁱ	3.6795 (12)	O1-Ba1 ^{iv}	4.041 (10)
Ba2-Sb2 ⁱⁱⁱ	3.6996 (12)	O1-Ba2 ^{vii}	4.055 (10)
Ba3-O1	2.630 (3)		

Symmetry codes: (i) $x - \frac{1}{2}, \frac{1}{2} - y, z$; (ii) $\frac{1}{2} - x, \frac{1}{2} + y, 1 - z$; (iii) $\frac{1}{2} + x, \frac{1}{2} - y, z - 1$; (iv) $\frac{1}{2} + x, \frac{1}{2} - y, z$; (v) 1 - x, -y, 1 - z; (vi) $\frac{1}{2} - x, y - \frac{1}{2}, -z$.

Refinement

1

$w = 1/[\sigma^2(F_o^2) + (0.0306P)^2]$
+ 10.2529P]
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} < 0.001$
$\Delta \rho_{\rm max} = 1.81 \text{ e} \text{ Å}^{-3}$
$\Delta \rho_{\rm min} = -2.44 \text{ e } \text{\AA}^{-3}$

Data collection: *SMART* (Bruker, 1999); cell refinement: *SAINT* (Bruker, 1999); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *ORTEP* (Johnson, 1968) and *DRAWxtl* (Finger& Kroeker, 1999); software used to prepare material for publication: *SHELXL*97.

We would like to thank the Adolf-Messer-Stifung, the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie for financial support.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: IZ1006). Services for accessing these data are described at the back of the journal.

References

- Brechtel, E., Cordier, G. & Schäfer, H. (1981). Z. Naturforsch. Teil B, 36, 1340–1344.
- Bruker (1999). *SMART* and *SAINT*. Versions 6.02A. Bruker AXS Inc., Madison, Wisconsin, USA.
- Derrien, G., Monconduit, L., Tillard, M. & Belin, C. (1999). Acta Cryst. C55, 1044–1046.
- Eisenmann, B., Gieck, C. & Rössler, U. (1999). Z. Anorg. Allg. Chem. 625, 1331–1336.
- Finger, L. & Kroeker, M. (1999). DRAWxtl. Home page, http://www.lwfinger.net/drawxtl.html.
- George, R. & Röhr, C. (1996). Z. Kristallogr. 221, 478-478.
- Hirschle, C. & Röhr, C. (2000). Z. Anorg. Allg. Chem. 626, 1992-1998.
- Johnson, C. K. (1968). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA. [Openwindows Version (1991) of Norimasa Yamazaki, Tokyo, Japan.]
- Pickhard, F. & Röhr, C. (2000). Z. Kristallogr. Suppl. 17, 164-164.
- Schnering, H. G. von, Bolle, U., Curda, J., Peters, K., Carrillo-Cabrera, W., Somer, M., Schultheiss, M. & Wedig, W. (1996). Angew. Chem. 108, 1062– 1064.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.